Regression in random design and Bayesian warped wavelets estimators

نویسندگان

  • Thanh Mai
  • Pham Ngoc
  • Thanh Mai Pham
  • Thanh Mai Pham Ngoc
چکیده

In this paper we deal with the regression problem in a random design setting. We investigate asymptotic optimality under minimax point of view of various Bayesian rules based on warped wavelets and show that they nearly attain optimal minimax rates of convergence over the Besov smoothness class considered. Warped wavelets have been introduced recently, they offer very good computable and easyto-implement properties while being well adapted to the statistical problem at hand. We particularly put emphasis on Bayesian rules leaning on small and large variance Gaussian priors and discuss their simulation performances comparing them with a hard thresholding procedure.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On the Minimax Optimality of Block Thresholded Wavelets Estimators for ?-Mixing Process

We propose a wavelet based regression function estimator for the estimation of the regression function for a sequence of ?-missing random variables with a common one-dimensional probability density function. Some asymptotic properties of the proposed estimator based on block thresholding are investigated. It is found that the estimators achieve optimal minimax convergence rates over large class...

متن کامل

Wavelets for Nonparametric Stochastic Regression with Pairwise Negative Quadrant Dependent Random Variables

We propose a wavelet based stochastic regression function estimator for the estimation of the regression function for a sequence of pairwise negative quadrant dependent random variables with a common one-dimensional probability density function. Some asymptotic properties of the proposed estimator are investigated. It is found that the estimators have similar properties to their counterparts st...

متن کامل

Regression in random design and warped wavelets

We consider the problem of estimating an unknown function f in a regression setting with random design. Instead of expanding the function on a regular wavelet basis, we expand it on the basis {ψjk(G), j, k} warped with the design. This allows to perform a very stable and computable thresholding algorithm. We investigate the properties of this new basis. In particular, we prove that if the desig...

متن کامل

Warped Wavelet and Vertical Thresholding

Let {(Xi, Yi)}i∈{1,...,n} be an i.i.d. sample from the random design regression model Y = f(X) + ε with (X, Y ) ∈ [0, 1] × [−M,M ]. In dealing with such a model, adaptation is naturally to be intended in terms of L([0, 1], GX) norm where GX(·) denotes the (known) marginal distribution of the design variable X. Recently much work has been devoted to the construction of estimators that adapts in ...

متن کامل

ESTIMATORS BASED ON FUZZY RANDOM VARIABLES AND THEIR MATHEMATICAL PROPERTIES

In statistical inference, the point estimation problem is very crucial and has a wide range of applications. When, we deal with some concepts such as random variables, the parameters of interest and estimates may be reported/observed as imprecise. Therefore, the theory of fuzzy sets plays an important role in formulating such situations. In this paper, we rst recall the crisp uniformly minimum ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009